banner
ShuWa

ShuWa

是进亦忧,退亦忧。然则何时而乐耶?
twitter

内存管理

内存管理主要做了什么?#

  • 内存的分配与回收:对进程所需的内存进行分配和释放,malloc 函数:申请内存,free 函数:释放内存。
  • 地址转换:将程序中的虚拟地址转换成内存中的物理地址。
  • 内存扩充:当系统没有足够的内存时,利用虚拟内存技术或自动覆盖技术,从逻辑上扩充内存。
  • 内存映射:将一个文件直接映射到进程的进程空间中,这样可以通过内存指针用读写内存的办法直接存取文件内容,速度更快。
  • 内存优化:通过调整内存分配策略和回收算法来优化内存使用效率。
  • 内存安全:保证进程之间使用内存互不干扰,避免一些恶意程序通过修改内存来破坏系统的安全性。

什么是内存碎片?#

内存碎片是由内存的申请和释放产生的,通常分为下面两种:

  • 内部内存碎片 (Internal Memory Fragmentation,简称为内存碎片):已经分配给进程使用但未被使用的内存。导致内部内存碎片的主要原因是,当采用固定比例比如 2 的幂次方进行内存分配时,进程所分配的内存可能会比其实际所需要的大。举个例子,一个进程只需要 65 字节的内存,但为其分配了 128(2^7) 大小的内存,那 63 字节的内存就成为了内部内存碎片。
  • 外部内存碎片 (External Memory Fragmentation,简称为外部碎片):由于未分配的连续内存区域太小,以至于不能满足任意进程所需要的内存分配请求,这些小片段且不连续的内存空间被称为外部碎片。也就是说,外部内存碎片指的是那些并为分配给进程但又不能使用的内存。我们后面介绍的分段机制就会导致外部内存碎片。
    image

常见的内存管理方式有哪些?#

连续内存管理#

块式管理
块式管理会将内存分为几个固定大小的块,每个块中只包含一个进程。如果程序运行需要内存的话,操作系统就分配给它一块,如果程序运行只需要很小的空间的话,分配的这块内存很大一部分几乎被浪费了。这些在每个块中未被利用的空间,我们称之为内部内存碎片。除了内部内存碎片之外,由于两个内存块之间可能还会有外部内存碎片,这些不连续的外部内存碎片由于太小了无法再进行分配。
在 Linux 系统中,连续内存管理采用了 伙伴系统(Buddy System)算法 来实现,这是一种经典的连续内存分配算法,可以有效解决外部内存碎片的问题。伙伴系统的主要思想是将内存按 2 的幂次划分(每一块内存大小都是 2 的幂次比如 2^6=64 KB),并将相邻的内存块组合成一对伙伴(注意:必须是相邻的才是伙伴)。
当进行内存分配时,伙伴系统会尝试找到大小最合适的内存块。如果找到的内存块过大,就将其一分为二,分成两个大小相等的伙伴块。如果还是大的话,就继续切分,直到到达合适的大小为止。
假设两块相邻的内存块都被释放,系统会将这两个内存块合并,进而形成一个更大的内存块,以便后续的内存分配。这样就可以减少内存碎片的问题,提高内存利用率。

非连续内存管理#

非连续内存管理存在下面 3 种方式:

  • 段式管理:以段 (— 段连续的物理内存) 的形式管理 / 分配物理内存。应用程序的虚拟地址空间被分为大小不等的段,段是有实际意义的,每个段定义了一组逻辑信息,例如有主程序段 MAIN、子程序段 X、数据段 D 及栈段 S 等。
  • 页式管理:把物理内存分为连续等长的物理页,应用程序的虚拟地址空间划也被分为连续等长的虚拟页,现代操作系统广泛使用的一种内存管理方式。
  • 段页式管理机制:结合了段式管理和页式管理的一种内存管理机制,把物理内存先分成若干段,每个段又继续分成若干大小相等的页。

虚拟内存#

什么是虚拟内存?有什么用?#

虚拟内存 (Virtual Memory) 是计算机系统内存管理非常重要的一个技术,本质上来说它只是逻辑存在的,是一个假想出来的内存空间,主要作用是作为进程访问主存(物理内存)的桥梁并简化内存管理。
总结来说,虚拟内存主要提供了下面这些能力:

  • 隔离进程:物理内存通过虚拟地址空间访问,虚拟地址空间与进程一一对应。每个进程都认为自己拥有了整个物理内存,进程之间彼此隔离,一个进程中的代码无法更改正在由另一进程或操作系统使用的物理内存。
  • 提升物理内存利用率:有了虚拟地址空间后,操作系统只需要将进程当前正在使用的部分数据或指令加载入物理内存。
  • 简化内存管理:进程都有一个一致且私有的虚拟地址空间,程序员不用和真正的物理内存打交道,而是借助虚拟地址空间访问物理内存,从而简化了内存管理。
  • 多个进程共享物理内存:进程在运行过程中,会加载许多操作系统的动态库。这些库对于每个进程而言都是公用的,它们在内存中实际只会加载一份,这部分称为共享内存。
  • 提高内存使用安全性:控制进程对物理内存的访问,隔离不同进程的访问权限,提高系统的安全性。
  • 提供更大的可使用内存空间:可以让程序拥有超过系统物理内存大小的可用内存空间。这是因为当物理内存不够用时,可以利用磁盘充当,将物理内存页(通常大小为 4 KB)保存到磁盘文件(会影响读写速度),数据或代码页会根据需要在物理内存与磁盘之间移动。

什么是虚拟地址和物理地址?#

物理地址(Physical Address) 是真正的物理内存中地址,更具体点来说是内存地址寄存器中的地址。程序中访问的内存地址不是物理地址,而是 虚拟地址(Virtual Address)
也就是说,我们编程开发的时候实际就是在和虚拟地址打交道。比如在 C 语言中,指针里面存储的数值就可以理解成为内存里的一个地址,这个地址也就是我们说的虚拟地址。
操作系统一般通过 CPU 芯片中的一个重要组件 MMU (Memory Management Unit,内存管理单元) 将虚拟地址转换为物理地址,这个过程被称为 地址翻译 / 地址转换(Address Translation)

虚拟地址与物理内存地址是如何映射的?#

MMU 将虚拟地址翻译为物理地址的主要机制有 3 种:

  1. 分段机制
  2. 分页机制
  3. 段页机制

分段机制#

分段机制(Segmentation) 以段 (— 段 连续 的物理内存) 的形式管理 / 分配物理内存。应用程序的虚拟地址空间被分为大小不等的段,段是有实际意义的,每个段定义了一组逻辑信息,例如有主程序段 MAIN、子程序段 X、数据段 D 及栈段 S 等。

段表有什么用?地址翻译过程是怎样的?#

分段机制下的虚拟地址由两部分组成,段选择因子段内偏移量

image

段选择因子和段内偏移量:

  • 段选择子就保存在段寄存器里面。段选择子里面最重要的是段号,用作段表的索引。段表里面保存的是这个段的基地址、段的界限和特权等级等。
  • 虚拟地址中的段内偏移量应该位于 0 和段界限之间,如果段内偏移量是合法的,就将段基地址加上段内偏移量得到物理内存地址。
    image

在上面,知道了虚拟地址是通过段表与物理地址进行映射的,分段机制会把程序的虚拟地址分成 4 个段,每个段在段表中有一个项,在这一项找到段的基地址,再加上偏移量,于是就能找到物理内存中的地址,如下图:
分段的办法很好,解决了程序本身不需要关心具体的物理内存地址的问题,但它也有一些不足之处:

  • 第一个就是内存碎片的问题。
  • 第二个就是内存交换的效率低的问题。
内存分段会出现内存碎片吗?#

内存分段管理可以做到段根据实际需求分配内存,所以有多少需求就分配多大的段,所以不会出现内部内存碎片
但是由于每个段的长度不固定,所以多个段未必能恰好使用所有的内存空间,会产生了多个不连续的小物理内存,导致新的程序无法被装载,所以会出现外部内存碎片的问题。
解决「外部内存碎片」的问题就是内存交换
可以把音乐程序占用的那 256MB 内存写到硬盘上,然后再从硬盘上读回来到内存里。不过再读回的时候,我们不能装载回原来的位置,而是紧紧跟着那已经被占用了的 512MB 内存后面。这样就能空缺出连续的 256MB 空间,于是新的 200MB 程序就可以装载进来。
这个内存交换空间,在 Linux 系统里,也就是我们常看到的 Swap 空间,这块空间是从硬盘划分出来的,用于内存与硬盘的空间交换。

分段为什么会导致内存交换效率低的问题?#

对于多进程的系统来说,用分段的方式,外部内存碎片是很容易产生的,产生了外部内存碎片,那不得不重新 Swap 内存区域,这个过程会产生性能瓶颈。
因为硬盘的访问速度要比内存慢太多了,每一次内存交换,我们都需要把一大段连续的内存数据写到硬盘上。
所以,如果内存交换的时候,交换的是一个占内存空间很大的程序,这样整个机器都会显得卡顿。
为了解决内存分段的「外部内存碎片和内存交换效率低」的问题,就出现了内存分页

分页机制#

分页是把整个虚拟和物理内存空间切成一段段固定尺寸的大小。这样一个连续并且尺寸固定的内存空间,我们叫Page)。在 Linux 下,每一页的大小为 4KB
虚拟地址与物理地址之间通过页表来映射,如下图:
image
页表是存储在内存里的,内存管理单元 (MMU)就做将虚拟内存地址转换成物理地址的工作。
而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入系统内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。

页表有什么用?地址翻译过程是怎样的?#

image
在分页机制下,每个应用程序都会有一个对应的页表。
分页机制下的虚拟地址由两部分组成:

  • 页号:通过虚拟页号可以从页表中取出对应的物理页号;
  • 页内偏移量:物理页起始地址 + 页内偏移量 = 物理内存地址。

具体的地址翻译过程如下:

  1. MMU 首先解析得到虚拟地址中的虚拟页号;
  2. 通过虚拟页号去该应用程序的页表中取出对应的物理页号(找到对应的页表项);
  3. 用该物理页号对应的物理页起始地址(物理地址)加上虚拟地址中的页内偏移量得到最终的物理地址。

image

分页是怎么解决分段的「外部内存碎片和内存交换效率低」的问题?#

内存分页由于内存空间都是预先划分好的,也就不会像内存分段一样,在段与段之间会产生间隙非常小的内存,这正是分段会产生外部内存碎片的原因。而采用了分页,页与页之间是紧密排列的,所以不会有外部碎片。
但是,因为内存分页机制分配内存的最小单位是一页,即使程序不足一页大小,我们最少只能分配一个页,所以页内会出现内存浪费,所以针对内存分页机制会有内部内存碎片的现象。
如果内存空间不够,操作系统会把其他正在运行的进程中的「最近没被使用」的内存页面给释放掉,也就是暂时写在硬盘上,称为换出Swap Out)。一旦需要的时候,再加载进来,称为换入Swap In)。所以,一次性写入磁盘的也只有少数的一个页或者几个页,不会花太多时间,内存交换的效率就相对比较高。

image

更进一步地,分页的方式使得我们在加载程序的时候,不再需要一次性都把程序加载到物理内存中。我们完全可以在进行虚拟内存和物理内存的页之间的映射之后,并不真的把页加载到物理内存里,而是只有在程序运行中,需要用到对应虚拟内存页里面的指令和数据时,再加载到物理内存里面去。

单级页表有什么问题?为什么需要多级页表?#

因为操作系统是可以同时运行非常多的进程的,那这不就意味着页表会非常的庞大。
在 32 位的环境下,虚拟地址空间共有 4GB,假设一个页的大小是 4KB(2^12),那么就需要大约 100 万 (2^20) 个页,每个「页表项」需要 4 个字节大小来存储,那么整个 4GB 空间的映射就需要有 4MB 的内存来存储页表。
这 4MB 大小的页表,看起来也不是很大。但是要知道每个进程都是有自己的虚拟地址空间的,也就说都有自己的页表。
那么,100 个进程的话,就需要 400MB 的内存来存储页表,这是非常大的内存了,更别说 64 位的环境了。

多级页表#

要解决上面的问题,就需要采用一种叫作多级页表Multi-Level Page Table)的解决方案。
我们把这个 100 多万个「页表项」的单级页表再分页,将页表(一级页表)分为 1024 个页表(二级页表),每个表(二级页表)中包含 1024 个「页表项」,形成二级分页。如下图所示:
image
二级列表分为一级页表和二级页表。一级页表共有 1024 个页表项,一级页表又关联二级页表,二级页表同样共有 1024 个页表项。二级页表中的一级页表项是一对多的关系,二级页表按需加载(只会用到很少一部分二级页表),进而节省空间占用。
假设只需要 2 个二级页表,那两级页表的内存占用情况为: 4KB(一级页表占用) + 4KB * 2(二级页表占用) = 12 KB。
多级页表属于时间换空间的典型场景,利用增加页表查询的次数减少页表占用的空间。

你可能会问,分了二级表,映射 4GB 地址空间就需要 4KB(一级页表)+ 4MB(二级页表)的内存,这样占用空间不是更大了吗?#

当然如果 4GB 的虚拟地址全部都映射到了物理内存上的话,二级分页占用空间确实是更大了,但是,我们往往不会为一个进程分配那么多内存。
其实我们应该换个角度来看问题,还记得计算机组成原理里面无处不在的局部性原理么?
每个进程都有 4GB 的虚拟地址空间,而显然对于大多数程序来说,其使用到的空间远未达到 4GB,因为会存在部分对应的页表项都是空的,根本没有分配,对于已分配的页表项,如果存在最近一定时间未访问的页表,在物理内存紧张的情况下,操作系统会将页面换出到硬盘,也就是说不会占用物理内存。
如果使用了二级分页,一级页表就可以覆盖整个 4GB 虚拟地址空间,但如果某个一级页表的页表项没有被用到,也就不需要创建这个页表项对应的二级页表了,即可以在需要时才创建二级页表。做个简单的计算,假设只有 20% 的一级页表项被用到了,那么页表占用的内存空间就只有 4KB(一级页表) + 20% * 4MB(二级页表)= 0.804MB,这对比单级页表的 4MB 是不是一个巨大的节约?

TLB#

多级页表虽然解决了空间上的问题,但是虚拟地址到物理地址的转换就多了几道转换的工序,这显然就降低了这俩地址转换的速度,也就是带来了时间上的开销。
程序是有局部性的,即在一段时间内,整个程序的执行仅限于程序中的某一部分。相应地,执行所访问的存储空间也局限于某个内存区域。
我们就可以利用这一特性,把最常访问的几个页表项存储到访问速度更快的硬件,于是计算机科学家们,就在 CPU 芯片中,加入了一个专门存放程序最常访问的页表项的 Cache,这个 Cache 就是 TLB(Translation Lookaside Buffer) ,通常称为页表缓存、转址旁路缓存、快表等。
有了 TLB 后,那么 CPU 在寻址时,会先查 TLB,如果没找到,才会继续查常规的页表。

段页式内存管理#

内存分段和内存分页并不是对立的,它们是可以组合起来在同一个系统中使用的,那么组合起来后,通常称为段页式内存管理
image

段页式内存管理实现的方式:

  • 先将程序划分为多个有逻辑意义的段,也就是前面提到的分段机制;
  • 接着再把每个段划分为多个页,也就是对分段划分出来的连续空间,再划分固定大小的页;

这样,地址结构就由段号、段内页号和页内位移三部分组成。
用于段页式地址变换的数据结构是每一个程序一张段表,每个段又建立一张页表,段表中的地址是页表的起始地址,而页表中的地址则为某页的物理页号,如图所示:
image
段页式地址变换中要得到物理地址须经过三次内存访问:

  • 第一次访问段表,得到页表起始地址;
  • 第二次访问页表,得到物理页号;
  • 第三次将物理页号与页内位移组合,得到物理地址。

可用软、硬件相结合的方法实现段页式地址变换,这样虽然增加了硬件成本和系统开销,但提高了内存的利用率。

malloc 是如何分配内存的?#

Linux 进程的内存分布长什么样?#

在 Linux 操作系统中,虚拟地址空间的内部又被分为内核空间和用户空间两部分,不同位数的系统,地址空间的范围也不同。比如最常见的 32 位和 64 位系统,如下所示:
image
通过这里可以看出:

  • 32 位系统的内核空间占用 1G,位于最高处,剩下的 3G 是用户空间;
  • 64 位系统的内核空间和用户空间都是 128T,分别占据整个内存空间的最高和最低处,剩下的中间部分是未定义的。

再来说说,内核空间与用户空间的区别:

  • 进程在用户态时,只能访问用户空间内存;
  • 只有进入内核态后,才可以访问内核空间的内存;

虽然每个进程都各自有独立的虚拟内存,但是每个虚拟内存中的内核地址,其实关联的都是相同的物理内存。这样,进程切换到内核态后,就可以很方便地访问内核空间内存。
接下来,进一步了解虚拟空间的划分情况,用户空间和内核空间划分的方式是不同的,内核空间的分布情况就不多说了。
我们看看用户空间分布的情况,以 32 位系统为例,我画了一张图来表示它们的关系:
通过这张图你可以看到,用户空间内存从低到高分别是 6 种不同的内存段:
image

  • 代码段,包括二进制可执行代码;
  • 数据段,包括已初始化的静态常量和全局变量;
  • BSS 段,包括未初始化的静态变量和全局变量;
  • 堆段,包括动态分配的内存,从低地址开始向上增长;
  • 文件映射段,包括动态库、共享内存等,从低地址开始向上增长(跟硬件和内核版本有关);
  • 栈段,包括局部变量和函数调用的上下文等。栈的大小是固定的,一般是 8 MB。当然系统也提供了参数,以便我们自定义大小;

在这 6 个内存段中,堆和文件映射段的内存是动态分配的。比如说,使用 C 标准库的 malloc() 或者 mmap() ,就可以分别在堆和文件映射段动态分配内存。

malloc 是如何分配内存的?#

malloc 申请内存的时候,会有两种方式向操作系统申请堆内存。

  • 方式一:通过 brk () 系统调用从堆分配内存
  • 方式二:通过 mmap () 系统调用在文件映射区域分配内存;

方式一实现的方式很简单,就是通过 brk () 函数将「堆顶」指针向高地址移动,获得新的内存空间。如下图:
image
方式二通过 mmap () 系统调用中「私有匿名映射」的方式,在文件映射区分配一块内存,也就是从文件映射区 “偷” 了一块内存。如下图:
image
malloc () 源码里默认定义了一个阈值:

  • 如果用户分配的内存小于 128 KB,则通过 brk () 申请内存;
  • 如果用户分配的内存大于 128 KB,则通过 mmap () 申请内存;

malloc () 分配的是物理内存吗?#

不是的,malloc () 分配的是虚拟内存

malloc (1) 会分配多大的虚拟内存?#

malloc () 在分配内存的时候,并不是老老实实按用户预期申请的字节数来分配内存空间大小,而是会预分配更大的空间作为内存池
具体会预分配多大的空间,跟 malloc 使用的内存管理器有关系
这个例子分配的内存小于 128 KB,所以是通过 brk () 系统调用向堆空间申请的内存,因此可以看到最右边有 [heap] 的标识。
可以看到,堆空间的内存地址范围是 00d73000-00d94000,这个范围大小是 132KB,也就说明了 malloc (1) 实际上预分配 132K 字节的内存

free 释放内存,会归还给操作系统吗?#

  • malloc 通过 brk() 方式申请的内存,free 释放内存的时候,并不会把内存归还给操作系统,而是缓存在 malloc 的内存池中,待下次使用
  • malloc 通过 mmap() 方式申请的内存,free 释放内存的时候,会把内存归还给操作系统,内存得到真正的释放

为什么不全部使用 mmap 来分配内存?#

如果都用 mmap 来分配内存,等于每次都要执行系统调用。
另外,因为 mmap 分配的内存每次释放的时候,都会归还给操作系统,于是每次 mmap 分配的虚拟地址都是缺页状态的,然后在第一次访问该虚拟地址的时候,就会触发缺页中断。
频繁通过 mmap 分配的内存话,不仅每次都会发生运行态的切换,还会发生缺页中断(在第一次访问虚拟地址后),这样会导致 CPU 消耗较大
为了改进这两个问题,malloc 通过 brk () 系统调用在堆空间申请内存的时候,由于堆空间是连续的,所以直接预分配更大的内存来作为内存池,当内存释放的时候,就缓存在内存池中。
等下次在申请内存的时候,就直接从内存池取出对应的内存块就行了,而且可能这个内存块的虚拟地址与物理地址的映射关系还存在,这样不仅减少了系统调用的次数,也减少了缺页中断的次数,这将大大降低 CPU 的消耗

为什么不全部使用 brk 来分配?#

过 brk 从堆空间分配的内存,并不会归还给操作系统,如果我们连续申请了 10k,20k,30k 这三片内存,如果 10k 和 20k 这两片释放了,变为了空闲内存空间,如果下次申请的内存小于 30k,那么就可以重用这个空闲内存空间。
但是如果下次申请的内存大于 30k,没有可用的空闲内存空间,必须向 OS 申请,实际使用内存继续增大。
因此,随着系统频繁地 malloc 和 free ,尤其对于小块内存,堆内将产生越来越多不可用的碎片,导致 “内存泄露”。而这种 “泄露” 现象使用 valgrind 是无法检测出来的。
所以,malloc 实现中,充分考虑了 brk 和 mmap 行为上的差异及优缺点,默认分配大块内存 (128KB) 才使用 mmap 分配内存空间。

free () 函数只传入一个内存地址,为什么能知道要释放多大的内存?#

malloc 返回给用户态的内存起始地址比进程的堆空间起始地址多了 16 字节
这个多出来的 16 字节就是保存了该内存块的描述信息,比如有该内存块的大小。
这样当执行 free () 函数时,free 会对传入进来的内存地址向左偏移 16 字节,然后从这个 16 字节的分析出当前的内存块的大小,自然就知道要释放多大的内存了。

内存满了,会发生什么?#

内存分配和回收的过程是怎样的?#

当应用程序读写了这块虚拟内存,CPU 就会去访问这个虚拟内存, 这时会发现这个虚拟内存没有映射到物理内存, CPU 就会产生缺页中断,进程会从用户态切换到内核态,并将缺页中断交给内核的 Page Fault Handler (缺页中断函数)处理。
缺页中断处理函数会看是否有空闲的物理内存,如果有,就直接分配物理内存,并建立虚拟内存与物理内存之间的映射关系。
如果没有空闲的物理内存,那么内核就会开始进行回收内存的工作,回收的方式主要是两种:直接内存回收和后台内存回收。

  • 后台内存回收(kswapd):在物理内存紧张的时候,会唤醒 kswapd 内核线程来回收内存,这个回收内存的过程异步的,不会阻塞进程的执行。
  • 直接内存回收(direct reclaim):如果后台异步回收跟不上进程内存申请的速度,就会开始直接回收,这个回收内存的过程是同步的,会阻塞进程的执行。
  • 如果直接内存回收后,空闲的物理内存仍然无法满足此次物理内存的申请,那么内核就会放最后的大招了 ——触发 OOM (Out of Memory)机制

OOM Killer 机制会根据算法选择一个占用物理内存较高的进程,然后将其杀死,以便释放内存资源,如果物理内存依然不足,OOM Killer 会继续杀死占用物理内存较高的进程,直到释放足够的内存位置。

哪些内存可以被回收?#

主要有两类内存可以被回收,而且它们的回收方式也不同。

  • 文件页(File-backed Page):内核缓存的磁盘数据(Buffer)和内核缓存的文件数据(Cache)都叫作文件页。大部分文件页,都可以直接释放内存,以后有需要时,再从磁盘重新读取就可以了。而那些被应用程序修改过,并且暂时还没写入磁盘的数据(也就是脏页),就得先写入磁盘,然后才能进行内存释放。所以,回收干净页的方式是直接释放内存,回收脏页的方式是先写回磁盘后再释放内存
  • 匿名页(Anonymous Page):这部分内存没有实际载体,不像文件缓存有硬盘文件这样一个载体,比如堆、栈数据等。这部分内存很可能还要再次被访问,所以不能直接释放内存,它们回收的方式是通过 Linux 的 Swap 机制,Swap 会把不常访问的内存先写到磁盘中,然后释放这些内存,给其他更需要的进程使用。再次访问这些内存时,重新从磁盘读入内存就可以了。

文件页和匿名页的回收都是基于 LRU 算法,也就是优先回收不常访问的内存。LRU 回收算法,实际上维护着 active 和 inactive 两个双向链表,其中:

  • active_list 活跃内存页链表,这里存放的是最近被访问过(活跃)的内存页;
  • inactive_list 不活跃内存页链表,这里存放的是很少被访问(非活跃)的内存页;
    越接近链表尾部,就表示内存页越不常访问。这样,在回收内存时,系统就可以根据活跃程度,优先回收不活跃的内存。

回收内存带来的性能影响#

回收内存的操作基本都会发生磁盘 I/O 的,如果回收内存的操作很频繁,意味着磁盘 I/O 次数会很多,这个过程势必会影响系统的性能,整个系统给人的感觉就是很卡。
解决方式。

调整文件页和匿名页的回收倾向#

从文件页和匿名页的回收操作来看,文件页的回收操作对系统的影响相比匿名页的回收操作会少一点,因为文件页对于干净页回收是不会发生磁盘 I/O 的,而匿名页的 Swap 换入换出这两个操作都会发生磁盘 I/O。
Linux 提供了一个 /proc/sys/vm/swappiness 选项,用来调整文件页和匿名页的回收倾向。
swappiness 的范围是 0-100,数值越大,越积极使用 Swap,也就是更倾向于回收匿名页;数值越小,越消极使用 Swap,也就是更倾向于回收文件页。
一般建议 swappiness 设置为 0(默认值是 60),这样在回收内存的时候,会更倾向于文件页的回收,但是并不代表不会回收匿名页。

尽早触发 kswapd 内核线程异步回收内存#

内核定义了三个内存阈值(watermark,也称为水位),用来衡量当前剩余内存(pages_free)是否充裕或者紧张,分别是:

  • 页最小阈值(pages_min);
  • 页低阈值(pages_low);
  • 页高阈值(pages_high);

这三个内存阈值会划分为四种内存使用情况

image

  • 图中橙色部分:如果剩余内存(pages_free)在页低阈值(pages_low)和页最小阈值(pages_min)之间,说明内存压力比较大,剩余内存不多了。这时 kswapd0 会执行内存回收,直到剩余内存大于高阈值(pages_high)为止。虽然会触发内存回收,但是不会阻塞应用程序,因为两者关系是异步的。
  • 图中红色部分:如果剩余内存(pages_free)小于页最小阈值(pages_min),说明用户可用内存都耗尽了,此时就会触发直接内存回收,这时应用程序就会被阻塞,因为两者关系是同步的。

页低阈值(pages_low)可以通过内核选项 /proc/sys/vm/min_free_kbytes (该参数代表系统所保留空闲内存的最低限)来间接设置。
min_free_kbytes 虽然设置的是页最小阈值(pages_min),但是页高阈值(pages_high)和页低阈值(pages_low)都是根据页最小阈值(pages_min)计算生成的,它们之间的计算关系如下:

pages_min = min_free_kbytes
pages_low = pages_min*5/4
pages_high = pages_min*3/2

4. 如何保护一个进程不被 OOM 杀掉呢?#

Linux 到底是根据什么标准来选择被杀的进程呢?这就要提到一个在 Linux 内核里有一个 oom_badness() 函数,它会把系统中可以被杀掉的进程扫描一遍,并对每个进程打分,得分最高的进程就会被首先杀掉。
用「系统总的可用页面数」乘以 「OOM 校准值 oom_score_adj」再除以 1000,最后再加上进程已经使用的物理页面数,计算出来的值越大,那么这个进程被 OOM Kill 的几率也就越大

  • 如果你不想某个进程被首先杀掉,那你可以调整该进程的 oom_score_adj,从而改变这个进程的得分结果,降低该进程被 OOM 杀死的概率。
  • 如果你想某个进程无论如何都不能被杀掉,那你可以将 oom_score_adj 配置为 -1000。

7. 如何避免预读失效和缓存污染的问题?#

1.Linux 和 MySQL 的缓存#

Linux 操作系统的缓存#

在应用程序读取文件的数据的时候,Linux 操作系统是会对读取的文件数据进行缓存的,会缓存在文件系统中的 Page Cache
Page Cache 属于内存空间里的数据,由于内存访问比磁盘访问快很多,在下一次访问相同的数据就不需要通过磁盘 I/O 了,命中缓存就直接返回数据即可。
因此,Page Cache 起到了加速访问数据的作用。

MySQL 的缓存#

MySQL 的数据是存储在磁盘里的,为了提升数据库的读写性能,Innodb 存储引擎设计了一个缓冲池(Buffer Pool),Buffer Pool 属于内存空间里的数据。
有了缓冲池后:

  • 当读取数据时,如果数据存在于 Buffer Pool 中,客户端就会直接读取 Buffer Pool 中的数据,否则再去磁盘中读取。
  • 当修改数据时,首先是修改 Buffer Pool 中数据所在的页,然后将其页设置为脏页,最后由后台线程将脏页写入到磁盘。

2. 传统 LRU 是如何管理内存数据的?#

传统的 LRU 算法并没有被 Linux 和 MySQL 使用,因为传统的 LRU 算法无法避免下面这两个问题:

  • 预读失效导致缓存命中率下降;
  • 缓存污染导致缓存命中率下降;

2. 预读失效,怎么办?#

什么是预读机制?#

Linux 操作系统为基于 Page Cache 的读缓存机制提供预读机制,一个例子是:

  • 应用程序只想读取磁盘上文件 A 的 offset 为 0-3KB 范围内的数据,由于磁盘的基本读写单位为 block(4KB),于是操作系统至少会读 0-4KB 的内容,这恰好可以在一个 page 中装下。
  • 但是操作系统出于空间局部性原理(靠近当前被访问数据的数据,在未来很大概率会被访问到),会选择将磁盘块 offset [4KB,8KB)、[8KB,12KB) 以及 [12KB,16KB) 都加载到内存,于是额外在内存中申请了 3 个 page;
    下图代表了操作系统的预读机制:

image
因此,预读机制带来的好处就是减少了 磁盘 I/O 次数,提高系统磁盘 I/O 吞吐量
MySQL Innodb 存储引擎的 Buffer Pool 也有类似的预读机制,MySQL 从磁盘加载页时,会提前把它相邻的页一并加载进来,目的是为了减少磁盘 IO。

预读失效会带来什么问题?#

如果这些被提前加载进来的页,并没有被访问,相当于这个预读工作是白做了,这个就是预读失效
如果使用传统的 LRU 算法,就会把「预读页」放到 LRU 链表头部,而当内存空间不够的时候,还需要把末尾的页淘汰掉。
如果这些「预读页」如果一直不会被访问到,就会出现一个很奇怪的问题,不会被访问的预读页却占用了 LRU 链表前排的位置,而末尾淘汰的页,可能是热点数据,这样就大大降低了缓存命中率 。

如何避免预读失效造成的影响?#

inux 操作系统和 MySQL Innodb 通过改进传统 LRU 链表来避免预读失效带来的影响,具体的改进分别如下:

  • Linux 操作系统实现两个了 LRU 链表:活跃 LRU 链表(active_list)和非活跃 LRU 链表(inactive_list)
  • MySQL 的 Innodb 存储引擎是在一个 LRU 链表上划分来 2 个区域:young 区域 和 old 区域
    这两个改进方式,设计思想都是类似的,都是将数据分为了冷数据和热数据,然后分别进行 LRU 算法。不再像传统的 LRU 算法那样,所有数据都只用一个 LRU 算法管理。
    给大家举个例子。
    假设有一个长度为 10 的 LRU 链表,其中 young 区域占比 70 %,old 区域占比 30 %。
    image
    现在有个编号为 20 的页被预读了,这个页只会被插入到 old 区域头部,而 old 区域末尾的页(10 号)会被淘汰掉。
    image
    如果 20 号页一直不会被访问,它也没有占用到 young 区域的位置,而且还会比 young 区域的数据更早被淘汰出去。
    如果 20 号页被预读后,立刻被访问了,那么就会将它插入到 young 区域的头部,young 区域末尾的页(7 号),会被挤到 old 区域,作为 old 区域的头部,这个过程并不会有页被淘汰。
    image

3. 缓存污染,怎么办?#

什么是缓存污染?#

当我们在批量读取数据的时候,由于数据被访问了一次,这些大量数据都会被加入到「活跃 LRU 链表」里,然后之前缓存在活跃 LRU 链表(或者 young 区域)里的热点数据全部都被淘汰了,如果这些大量的数据在很长一段时间都不会被访问的话,那么整个活跃 LRU 链表(或者 young 区域)就被污染了

怎么避免缓存污染造成的影响?#

前面的 LRU 算法只要数据被访问一次,就将数据加入活跃 LRU 链表(或者 young 区域),这种 LRU 算法进入活跃 LRU 链表的门槛太低了!正式因为门槛太低,才导致在发生缓存污染的时候,很容就将原本在活跃 LRU 链表里的热点数据淘汰了。
所以,只要我们提高进入到活跃 LRU 链表(或者 young 区域)的门槛,就能有效地保证活跃 LRU 链表(或者 young 区域)里的热点数据不会被轻易替换掉
Linux 操作系统和 MySQL Innodb 存储引擎分别是这样提高门槛的:

  • Linux 操作系统:在内存页被访问第二次的时候,才将页从 inactive list 升级到 active list 里。
  • MySQL Innodb:在内存页被访问第二次的时候,并不会马上将该页从 old 区域升级到 young 区域,因为还要进行停留在 old 区域的时间判断
    • 如果第二次的访问时间与第一次访问的时间在 1 秒内(默认值),那么该页就不会被从 old 区域升级到 young 区域;
    • 如果第二次的访问时间与第一次访问的时间超过 1 秒,那么该页就从 old 区域升级到 young 区域;
      提高了进入活跃 LRU 链表(或者 young 区域)的门槛后,就很好了避免缓存污染带来的影响。
      在批量读取数据时候,如果这些大量数据只会被访问一次,那么它们就不会进入到活跃 LRU 链表(或者 young 区域),也就不会把热点数据淘汰,只会待在非活跃 LRU 链表(或者 old 区域)中,后续很快也会被淘汰。
加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。